

Mike Hack

Universal Display Corporation

375 Phillips Boulevard, Ewing, NJ 08618 www.universaldisplay.com

Why OLED?

And...

Transparency

Flexibility

- **Bright**
- Power efficient > Thin
- Wide viewing angle
 Video Rate

 - > Low manufacturing cost

Flat Panel Displays

Automotive clusters

Passenger entertainment

Cell phones

Laptops

➤ Demonstrated 2.2"

Transparent AMOLED at SID 2003

Demonstrated 15.5" AMOLED Monitor Display at SID 2003

Images courtesy of H. K. Chung, Samsung SDI

UNIVERSAL DISPLAY

OLED Display Roadmap

Small Area Sector **OLED Products**

Small Area Multi-color OLED Products

OLED Product Roadmap

UNIVERSAL DISPLAY

Key milestones in OLED history

- ➤ Organic materials emit light under current injection (~1970)
- ➤ Heterojunction small molecule device (1986)
- > Fluorescent doping of emissive layer to improve efficiency (1987)
- > First polymer OLED device (1990)
- ➤ Phosphorescent OLEDs (PHOLEDTM) (1997)
- First passive commercial product (1997)
- First active matrix OLED product (2003)

First Efficient OLEDs

First efficient LED with a molecular organic emissive layer reported by Tang and VanSlyke, *Apl. Phys. Let.*, **1987**, emitter = **Alq**₃.

$$AI = AIq_3$$

First report of an LED fabricated with a polymeric emissive layer reported by Friend, et. al., Nature, 1990, emitter = PPV.

$$= PPV$$

The OLED Family

UNIVERSAL DISPLAY

OLED Power Efficiency

$$\eta_{P} \propto \eta \, \eta_{ ext{OUT}} \, \eta_{ ext{ELEC}}$$

 η_P = Power efficiency

η = Quantum efficiency

Fluorescence: Radiation restricted to singlet excitons,

i.e., 1 of 4 spin states or ~25%.

Phosphorescence: Radiation is from triplets, i.e., 4 of 4

or ~100%.

 η_{OUT} = Light extraction efficiency, typically ~20%

 η_{ELEC} = Electrical efficiency (= V_{λ}/V where V_{λ} = photon energy, V= operating voltage)

PHOLEDs Color Coordinates

Cell Phone Power Consumption Comparison

Why White OLEDs?

- Displays alternative approach using white OLEDs and color filters
- Backlights alternative to conventional liquid crystal display (LCD) fluorescent backlights
- General Lighting alternative to current lighting options, i.e. incandescent bulbs, fluorescent bulbs
- > Requirements vary for each application

Methods for Obtaining White PHOLEDs

Three color OLED in one mixed layer

Pros:

• Simple structure

Cons:

- Low efficiency
- Highly precise doping required (energy transfer between dopants)

•Three color OLED in separate layers

Pros:

- straightforward
- high efficiency

Cons:

- Many EMLs / complex structure
- chromaticity
 stability (time and drive current)

UNIVERSAL DISPLAY

 Monomer Excimer emission

Pros:

• very simple, single dopant

Cons:

• Lifetime (currently)

Routes to White OLED (II): Downconverted Blue

Blue emitting layer

Hole transport layer

Substrate

Downconversion phosphor

Cathode

The Electrochemical Society *Interface* • Summer 2003 p.42

Transparent Anode

Duggal et al. Appl. Phys. Lett. **80**, 3470 (2002) 4 lm/W at 1000 cd/m², 1.3% WPE Later results → 7 lm/W

Pro: Simple structure

No color shifts

Con: Blue is the toughest OLED color to make efficient and stable

Efficiency loss due to Stokes shifts in phosphor

Alternative Approach to White Lighting Stripes

Close up – top view no diffuser

Shallow angle view – no diffuser

Top view with a diffuser

How to Achieve White Lighting from OLED at > 100 lm/W

- 1) Identify white light emitting system
- 2) Convert all electrical charge to photons ≈100% Internal quantum efficiency -- *Phosphorescence*
- 3) Ensure that as many photons as possible are radiated (outcoupling efficiency)
 - Use texturing or low index refraction layers
- 4) Reduce drive voltage close to photon energy
 - Good injecting contacts
 - High mobility transport layers
 - Doped transport layers
 - Device engineering e.g. graded interfaces UNIVERSAL DISPLAY

Achieving 100 Lm/W OLEDs!

Parameter	Current Status	Practical Limit
Light extraction	~ 20%	40%, with outcoupling enhancement
Brightness (cd/m²)	800	Trade-off with lifetime
Lifetime (hrs.)	10,000 (R, G)	TBD
R luminous eff (cd/A)	14	48
G luminous eff (cd/A)	28	140
B luminous eff (cd/A)	10	48
Device Voltage	6 - 8	3.2
Lifetime for 800 cd/m ²	5,000	20,000
Power efficiency (Im/W)	10 - 15	108

Rapid Improvement in PHOLED Device Lifetimes

Performance at L_0 =600nits (room temperature)

Transparent OLEDs (TOLEDs[™])

UDC Prototype

Application Concept

Transparent / Top Emission OLEDs (TOLEDs)

What's Next – OLED Displays

Continuous Manufacturing Process

Courtesy P.E. Burrows, PNNL

Thin Light Weight Conformable FPDs

In-Flex Use **Products**

Encapsulation of OLEDs on Plastic

Joint UDC / Vitex development program partially funded by DARPA/ARL

- > Hermetic sealing system
- No glue lines or edge seals
- Compatible with batch and roll-to-roll processes

Changing the way you view the world.

What's Next - OLED Lighting

PHOLEDs

TOLED Lighting Applications

Near-term

Appliances
Furniture
Architectural specialty lights
Backlights, e.g., for laptops
Avionic lighting
Interior windows
Ceilings

Longerterm

Acknowledgements

- Steve Forrest, Mark Thompson and their research teams at Princeton University and the University of Southern California
- > The entire UDC team
- ➤ The teams of R&D and Manufacturing Chemists at PPG Industries
- > Funding in part by ARL, CECOM and DOE